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SUMMARY

A non-oscillatory no-free-parameter finite element method (NNFEM) is presented based on the consideration of
wave propagation characteristic in different characteristic directions across a strong discontinuity through flux
vector splitting in order to satisfy the increasing entropy condition. The algorithm is analysed in detail for the
one-dimensional (1D) Euler equation and then extended to the 2D, axisymmetric and 3D Euler and Navier–
Stokes equations. Its applications in various cases—inviscid oblique shock wave reflection, flow over a forward
step, axisymmetric free jet flow, supersonic flows over 2D and 3D rectangular cavities—are given. These
computational results show that the present NNFEM is efficient in practice and stable in operations and is
especially capable of giving good resolution in simulating complicated separated and vortical flows interacting
with shock waves.
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1. INTRODUCTION

The development of the finite element technique and its extensive applications in CFD has attracted
more and more researchers in recent decades. One of its main difficulties is how to get high-
resolution computations in shock wave regions and also in complicated viscous flow fields. In
comparison with the success of high-resolution finite difference schemes such as TVD1 and NND,2

some advances have been achieved in finite element algorithms. The streamline upwind Petrov–
Galerkin (SUPG) algorithm of Hughes and Mallet3 and the ENO discretized algorithm of Baker and
Kim4 can eliminate the spurious oscillations in simulating shock waves, but their computational
resolution across shock waves is still unsatisfactory. Remakrishmanet al.5 increased the
computational resolution in the shock wave region by adding artificial viscosity in the discretization
and using the mesh refinement or mesh self-adaptation technique, but were not very successful in
practice and still worried about the existence of spurious oscillations. The failure of the finite element
method in this respect seriously retards its ability to successfully simulate complex super-
sonic=hypersonic flow problems.

Referring to an idea used in the finite difference method,2 we propose here a non-oscillatory no-
free parameter finite element method (NNFEM) based on the consideration of wave propagation
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characteristic in different characteristic directions across a strong discontinuity through flux vector
splitting in order to satisfy the increasing entropy condition. For verification of the present algorithm
an inviscid oblique shock wave reflection and a supersonic flow over a forward step are computed and
compared with available results. Also, an axisymmetric free jet flow with a high pressure ratio is
computed, where a Mach disc and a drum-like shock wave have been clearly shown. Next, supersonic
flows over 2D and 3D rectangular cavities are successfully simulated, where periodic motions of
shock waves and vortex flows have been investigated.

In Section 2, we introduce the present algorithm in the discretization of the 1D Euler equation. Then
it is extended to discretize the 2D, axisymmetric and 3D Euler equations in Section 3. In Section 4
several applications and discussions are given. Finally, conclusions are presented in Section 5.

2. NNFEM IN DISCRETIZATION OF 1D EULER EQUATIONS

The 1D Euler equation has the form

@U

@t
�

@F

@x
� 0;

U �

r

ru
e

2

4

3

5
; F �

ru
ru2

� p
�e � p�u

2

4

3

5
;

�1�

whereu; r; p and e denote velocity, density, pressure and total specific energy respectively. Now
equation (1) can be discretized by the Galerkin weighted residual method and integrated using
Green’s formula. For every elemente we have
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Figure 1. 2D element co-ordinate transformation

Figure 2. 3D element co-ordinate transformation
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In the classic Galerkin finite element method, the flux vectorF is approximated linearly as

F � NiFi � NjFj;

Ni � �xj ÿ x�=�xj ÿ xi�; Nj � �x ÿ xi�=�xj ÿ xi�;

where i and j denote the nodes of the elemente. This expression leads to the spurious oscillations
across a strong discontinuity, otherwise an artificial viscosity is needed.

Now we attack the problem physically. First, according to the different characteristic directions,
F is split by Steger’s technique6 into positive and negative fluxes so that the following hold.

(i) F � AU , i.e. F is a homogeneous function ofU.
(ii) The Jacobian matrixA may be written as

A � @F=@U � Sÿ1
LS;

Figure 3. Computed results for the inviscid shock wave reflection with incident shock anglef � 29�, stream Mach number 2�9
and uniform isotropic grid 121631: (a) computed pressure contours by present algorithm; (b) computed pressure distribution
along grid line on y � 0�5 by present algorithm; (c) computed pressure distribution along grid line ony � 0�5 by

first-order upwind scheme

A NON-OSCILLATORY NO-FREE-PARAMETER FINITE ELEMENT ALGORITHM 143



whereS is a non-singular characteristic vector. Ifli denote the characteristic roots ofA, then

L � diagflig; i � 1; 2; 3:

(iii) By using Steger’s splitting technique,

L
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(iv) We getF�
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:

Up to now it is clear that forF� the waves propagate from the upstream to the downstream and
reversely forFÿ. We can simulate this by using the forward and backward finite difference technique.
HenceF� and Fÿ in the elemente may be expressed with forward and backward Taylor series
expansions respectively up to second-order accuracy as
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In order to eliminate spurious oscillations across the shock wave, according to the analysis made
for the construction of the NND scheme,2 each derivative in (3) should be taken to be one, which
absolute value is the minimum between those on nodesi and j. If the signs of these derivatives oni
and j are different, we just take the minimum value to be zero. If the symbolminmod is used, i.e.

minmod�a; b� � 0�5 �sign�a� � sign�b��min�jaj; jbj�;

Figure 4. Density contours of 2D forward step

Figure 5. Pressure distribution along wall for 2D forward step
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then

@F�

@x

� �

im

� minmod
@F�

@x

� �

i

;

@F�

@x

� �

j

" #

;

@Fÿ

@x

� �

jm

� minmod
@Fÿ

@x

� �

i

;

@Fÿ

@x

� �

j

" #

: �5�

Finally the expression ofF is given as
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Substituting (6) into (2), we get the present discretized finite element algorithm which is accurate to
second order.

For the N–S equation the viscous term and the source term may still be discretized by the
classical Galerkin finite element method.

It can be proven that if the mass matrix of the left-hand term of (2) is replaced by a lumped
diagonal mass matrix,7 the present algorithm is reduced to the same form as the NND scheme.

Figure 6. (a) Density and (b) pressure contours in analysis of inviscid free jet flow with uniform isotropic grid 61661

Figure 7. Mach number distribution along centreline of inviscid free jet flow
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3. EXTENSION OF NNFEM TO MULTIDIMENSIONAL EULER EQUATIONS

3.1. Discretization of 2D and axisymmetric Euler Equations

The 2D and axisymmetric Euler equations may be written in the form
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For a quadrilateral element, after isoparametric transformation, equation (7) gives the form (Figure
1)
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Figure 8. Density contours at various times for 2D cavity
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whereJ is the determinant of the Jacobian matrix,J � xxyZ ÿ xZyx and

~F � Fxx � Gxy;
~G � FZx � GZy:

Applying Steger’s flux-splitting technique, we get
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:

Then we should calculate the derivatives of positive and negative fluxes on each node and give the
weighted integral of (7) in the form
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where the last term is a line integral along the boundary of the computational domain andnx andny

are the components of the vector perpendicular to the boundary.
Similarly to the 1D analysis, Taylor series expansion are applied for~F� and ~G� to second-order

accuracy. For example, the expression for~F� associated with the nodei can be written as (Figure 1)
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Figure 9. Pressure distribution along month of 2D cavity

Figure 10. Geometric 3D cavity
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Since the coefficients of flux derivatives are regarded as first-order quantities, the expressions of
flux derivatives need only first-order accuracy in order to keep~F at second-order accuracy. The
derivatives alongx andZ are determined in the following way:
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Applying the increasing entropy condition along thex-direction as given in (5), the function~F
associated with the nodei can be finally given as
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Similarly, we can write down the expressions of~F and ~G for all four nodes of this element.

Figure 11. Density contours in symmetric section at various times
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3.2. Discretization of 3D Euler

For a hexahedral element (Figure 2), after isoparametric transformation, the 3D Euler equation
gives the form
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Repeating the deduction made in the 2D analysis, we can get the discretized expression of~F
associated with the nodei as
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where the derivatives have the same forms as (10) and (12).
Similarly, we can write down the expressions of~F, ~G and ~H for all eight nodes of the hexahedral

element.
As for the time derivative term, it may be discretized using a lumped matrix technique7 and takes

the following for m with a second-order three-layer scheme at the time stepn � 1:
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Figure 12. Streamline patterns in various sections att � 4
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4. APPLICATIONS OF NNFEM IN CFD

The present algorithm has been successfully checked in various cases: regular reflection of an oblique
shock wave on a flat plate, supersonic flow over a forward step and axisymmetric free jet flow with a
very high pressure ratio. It has also been applied with great success to the numerical study of
supersonic flows over 2D and 3D rectangular cavities.

4.1. Inviscid oblique shock wave reflection

The first case computed is the regular reflection of an inviscid oblique shock wave (f � 29�) on a
flat plate withM

1

� 2�9 and a uniform isotropic grid of 1216 31 points.Figures 3(a)and 3(b) show
respectively the pressure contours and the pressure distribution along a grid line ony � 0�5. No
spurious oscillations were found in the shock wave region and the computational resolution for the
shock wave is obviously better than that given by a first-order upwind scheme (Figure 3(c)).

4.2. Supersonic flow over a forward step

Based on the 2D N–S equations, the supersonic flow ofM
1

� 2�3 over a forward step with the
length–height ratioL=H � 27�7 andRe

1;H � 7200 has been computed with the node number 16,400,
where refinement of the grids is made just near the viscous wall. As shown inFigure 4, the graph of
density contours results in good resolution in the whole flow field. The pressure distribution along the
wall compares well with the experimental data of Reference 8, as seen inFigure 5.

Based on the Euler equations, the axisymmetric free jet flow in still air�M
1

� 0� with the exit
conditionMj � 1, the ratio of the surrounding pressure to the total exit pressurep

1

=poj � 1=50 and
the temperature ratioT

1

=Toj � 1 has been computed with the node number 61661. It is well known
that this was a difficult case for finite element simulation in the past because of the very strong shock

Figure 13. Streamline patterns in various sectrions att � 5
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wave (Mach disc) involved. The density and pressure contours are shown inFigures 6(a)and 6(b)
respectively, where we can clearly see a Mach disc located at a distance of about five exit diameters
and the interaction between the Mach disc and a drum-like shock wave, which gives evidence of good
computational resolution and no spurious oscillations across these shocks.Figure 7shows the Mach
number distribution along the centreline, which is in excellent agreement with the finite difference
computational result of Reference 2.

4.3. Supersonic flow over a 2D rectangular cavity

Based on the N–S equations, the supersonic flow ofM
1

� 1�5 over a 2D rectangular cavity with
the length–height ratioL=H � 2 andRe

1;L � 105 has been predicted with the node number 61631
in the cavity. The density contours of this flow at various times are shown inFigure 8, where we can
clearly see the shock wave translating in a periodic motion and also the periodic vortex motion.
Figure 9shows the corresponding distributions along the bottom of the cavity. These phenomena are
consistent with the experimental observations of Reference 9.

The supersonic flow of M
1

� 1�5 over a 3D rectangular cavity (Figure 10) with
L : H : W � 2 : 1 : 1 and Re

1;L � 105 has been computed with the node number 316316 15 in
the cavity. The density contours in the symmetric section of the cavity at various times are shown in
Figure 11, where periodic motions of the shock wave and vortex flow, similar to the 2D case, can be
detected.Figures 12–15shown the streamline patterns of the cavity flow in its various sections at
four time steps. We are not ready to discuss the flow physics in this paper, other than to note that it is
a very complex unsteady separated and vortical flow with very interesting topological structures,
including temporal changes in nodal points and saddle points and a transformation between separated
and attached spiral points through limit cycles.

Figure 14. Streamline patterns in various sections att � 5�5
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5. CONCLUSIONS

A non-oscillatory no-free-parameter finite element algorithm has been constructed on a physical
basis, considering wave propagation characteristics in different characteristic directions across a
strong discontinuity through flux splitting and Taylor series expansion in order to get a reasonable
distribution of inviscid fluxes in every element and satisfy the increasing entropy condition. Its
applications to steady and unsteady complex flows of shock wave interactions and massive separation
with vortex motions have identified that the present algorithm gives good computational resolution
without spurious oscillations in the shock wave region as well as in the whole flow field. Also, it is
stable in operation and efficient in practice.
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